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Main directions

• Dynamic Service Level Agreements 
• SLA Aware Scheduling
• Synthetic SLA Workloads
• Other work in Progress
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All this is in the context of Service Level Agreements.

Viktor Yarmolenko, Rizos Sakellariou, Djamila

 

Ouelhadj, Jonathan 
M Garibaldi, “SLA Based Job Scheduling: A Case Study on Policies

 
for Negotiation With Resources”, Proceedings of the All Hands 
Meeting AHM'05, Nottingham, UK (September 2005) 
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SLA Example: Traditional Approach 
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SLA Example: Same as before, but …



Variable CPU Scenario (Traditional vs. Expressive SLA)
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Only Single Negotiation is Allowed
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 SLA terms expressed as functions
 SLA terms expressed as constants
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Don’t stop here, add more functions!!!

Viktor Yarmolenko, Rizos Sakellariou, “Towards 
Increased Expressiveness in Service Level 
Agreements”, Concurrency and Computation: 
Practice and Experience, vol.19, 1975-1990 (2007)

SLA Example: Defining the Price of the Service as Function



•
 

When client pays money, client wants guarantees, QoS, 
promises, etc

•
 

These can be defined in Service Level Agreements, 
which preferably are legally binding –

 
contracts.

•
 

Once provider agreed to the terms described in SLA, 
provider better keep the agreement. How? If failures 
occur, what to do? Which SLAs

 
to brake? How to 

schedule more efficiently? How to schedule to generate 
more income? …

The Problem
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Simple and Fast Heuristics: Step 1 -
 

Prioritising Jobs
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Simple and Fast Heuristics: Step 2 -
 

Allocating Jobs
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Results: Single Parameter Ordering
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Results: Two Parameter Ordering
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Pricing TF TS tD tL A NCPU

SLA
CPU

For best performance jobs must be always ordered by 
the lowest        or the highest       parameter first

Viktor Yarmolenko, Rizos Sakellariou, “An Evaluation of Heuristics for SLA Based Parallel Job Scheduling”, 
Proceedings of the 3rd High Performance Grid Computing Workshop (HPGC)

 

(in conjunction with IPDPS 2006), 
Rhodes, Greece (April 2006), IEEE Computer Society Press 

Other pricing policies were explored:

Results: Interesting Observations

Rizos Sakellariou, Viktor Yarmolenko, “Job Scheduling on the Grid: Towards SLA-Based Scheduling”,

 

in L. 
Grandinetti

 

(ed.),

 

High Performance Computing and Grids in Action", IOS Press, 2008

Higher level overview is here:



Workload: The Challenges

•
 

The performance of the system is heavily dependant on the type of the 
workload

• There is no or very little data available about SLA workloads

•
 

We need a tool that would allow to assemble a synthetic workload 
based on real logs, existing models, various other rules, and their 
combinations, easily integrated in a workload generator tool which 
would provide a workload stream with desired characteristics and

 behaviour. 

•
 

Novel workloads require new metrics or ways that characterise them 
(job rate, or throughput may not longer be an adequate description of a 
workload)



Workload Generator Framework: The Concept (paper in preparation)

N of CPUs

Job Duration

Time Constraints

Price
Other Characteristics

Job Rate

Job Arrival Time

Generator

SLA ID: 0001
SLA Birth: 12:00
SLO: job duration = 3:30h
SLO: CPUCount = 16
SLO: time constraints = 

{12:00-21:00} 
SLO: Price = £1

SLA ID: 0002
SLA Birth: 12:01
SLO: …
SLO: …
SLO: …
SLO: …

SLA ID: 0003
SLA Birth: 12:01
SLO: …
SLO: …
SLO: …
SLO: …

…

SLA Workload Framework



Calzarossa

 

& Serrazi

 

Model (1985) models the daily cycle of job rate, 
with peaks in the morning and afternoon, and a drop at lunchtime. 

Active Time Quiet Time

Extended to include a night time, currently 
const, but can be modelled by any function

Modelling Variation in User Demand: Related Work 

The Feitelson

 

Model (1996):
Degrees of Parallelism: harmonic 
distribution of order 1.5, with the most 
popular sizes of powers of two.
Repeated Executions: the same job is 
likely to be executed again,
n-2.5,where n is the job duration.
Arrival Process: used in this model is 
Poisson. 
Correlation of Runtime with Parallelism
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Modelling SLA Constraints: Paper in Preparation
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WebApp
 

Demo available from http://www.gridscheduling.org
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Workload Generator Framework: Example (paper in preparation)

http://www.gridscheduling.org/
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Workload Generator Framework: What Metrics (paper in preparation)

Example of a new metric: Load Density of the SLA workload
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Workload Generator Framework: Output



• Dynamic SLAs
 

for DAGs
• Dynamic SLAs

 
for dynamic workflows

• SLA workload models and generator
• Scheduling Heuristics
• Dynamic SLAs

 
for market models

• SLAs
 

with notion of trust



Thanks!

In preparation: Viktor Yarmolenko, Rizos Sakellariou, “A Framework for SLA Workload Generation”

In preparation: Viktor Yarmolenko, Rizos Sakellariou, “An SLA Workload Model for Time Constraints”

Rizos Sakellariou, Viktor Yarmolenko, “Job Scheduling on the Grid: Towards SLA-Based Scheduling”,

 in L. Grandinetti

 

(ed.),

 

High Performance Computing and Grids in Action, IOS Press, 2008

Viktor Yarmolenko, Rizos Sakellariou, “Towards Increased Expressiveness in Service Level 
Agreements”, Concurrency and Computation: Practice and Experience, vol.19, 1975-1990 (2007) 

Viktor Yarmolenko, Rizos Sakellariou, “An Evaluation of Heuristics for SLA Based Parallel Job 
Scheduling”, Proceedings of the 3rd High Performance Grid Computing Workshop (HPGC)

 

(in 
conjunction with IPDPS 2006), Rhodes, Greece (April 2006), IEEE Computer Society Press 

Viktor Yarmolenko, Rizos Sakellariou, Djamila

 

Ouelhadj, Jonathan M Garibaldi, “SLA Based Job 
Scheduling: A Case Study on Policies for Negotiation With Resources”, Proceedings of the All Hands 
Meeting AHM'05, Nottingham, UK (September 2005) 

Keep checking http://www.gridscheduling.org

http://www.gridscheduling.org/
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