
SORMA-Project Meeting
University of Karlsruhe

11,12 March 2008

People involved:
Rizos Sakellariou

Viktor Yarmolenko

rizos@cs.man.ac.uk

viktor@cs.man.ac.uk
The Univercity

of Manchester

School of Computer Science
Kilburn Building, Oxford Road

Manchester M13 9PL
United Kingdom

Recent Research Activities
Viktor Yarmolenko

mailto:rizos@cs.man.ac.uk
mailto:viktor@cs.man.ac.uk

Main directions

• Dynamic Service Level Agreements
• SLA Aware Scheduling
• Synthetic SLA Workloads
• Other work in Progress

User Resource

User

User

Resource

Resource
Coordinator

Different
Coordinator

Strategies

Different number of Resources,
each of different capacity,

availability and
other properties

Job Generator –

producing different user
behaviour, job workloads, etc.

Different negotiation
protocols

Simulation Example

Different
scheduling algorithms,

profit optimisations,
coping with

uncertainties, etc.

All this is in the context of Service Level Agreements.

Viktor Yarmolenko, Rizos Sakellariou, Djamila

Ouelhadj, Jonathan
M Garibaldi, “SLA Based Job Scheduling: A Case Study on Policies

for Negotiation With Resources”, Proceedings of the All Hands
Meeting AHM'05, Nottingham, UK (September 2005)

NCPU –

number of nodes required for the Job

tD

–

projected Job duration time for NCPU

nodes

TS –

the earliest time the Job is allowed to start

TF –

the latest time the Job is allowed to finish

Bjob

–

projected traffic that Job creates

Vpr

–

the price for executing the Job

Vpn

–

the penalty for failing the Job

……………………………………………………..

NCPU = 4

tD

= 6

CPU

Ti
m

e

TS

TF

SLA Example: Traditional Approach

CPU

Ti
m

e

NCPU = {2,3,4,..} is a range

tD

= is a function
NCPU

tUP

NCPU = 12 tD

= 2

NCPU = 8 tD

= 3

NCPU = 7
tD

= 3.43

NCPU = 6

tD

= 4

NCPU = 4

tD

= 6

N
C

PU
 =

 3

 t D

=
 8

N
C

PU
 =

 2

 t D

=
 1

2

tUP

= 24, (CPU-hours) duration

TS , TF

,… as before but …

Vtot

= X tD

Vpr

is a final value
of the agreement (for example)

SLA Example: Our Approach

BRES

(tcurr

) , bandwidth provided by the Resource

Bjob

= B0

d(NCPU

– 1) , traffic generated by the Job

tD

= BRES NCPU

Bjob

tUP

d(n)= n+(n-1)+…+2+1 , a known expression

2BRES

B0

tUP

(NCPU

– 1)
=

CPU#1
CPU#2

CPU#3
CPU#4

CPU#5

CPU#6

CPU

Ti
m

e

NCPU = 12 tD

= 2

NCPU = 8 tD

= 3

NCPU = 7

tD

= 3.43

NCPU = 6

tD

= 4

NCPU = 4

tD

= 6

N
C

PU
 =

 3

 t D

=
 8

N
C

PU
 =

 2

 t D

=
 1

2

CPU#1
CPU#2

CPU#3
CPU#4

CPU#5

CPU#6

tD

=
BRES NCPU

Bjob

tUP

NCPU

BRES

B0

tUP

(NCPU

– 1)
=

Bjob

= B0

(NCPU

– 1)

SLA Example: Same as before, but …

Variable CPU Scenario (Traditional vs. Expressive SLA)

User Resource

How about: NCPU

=6; tD

=4;

…
No can do /

Then how about: NCPU

=4; tD

=6;

…
No can do /

Then how about: NCPU

=2; tD

=12;

…
Will do ☺

User Resource
How about: tD

= f(NCPU

); …
Will do ☺

Ti
m

e
t =

 0
t →

∞
t =

 0
t «

∞

Only Single Negotiation is Allowed

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Th
e

pe
rc

en
ta

ge
 o

f R
ej

ec
te

d
Jo

bs
, %

The Percentage of Processed Jobs, %

 SLA terms expressed as functions
 SLA terms expressed as constants

1

ftr

(d)

(c)

(b)

(a)

Time, t

Bu
ild

in
g

 V
to

t
 fu

nc
tio

n

Vpn
max

Vpr
max

'ftr

'ftrfld

(ts+tD)ts

fld

BRES

(tcurr

)
tcurr

Rld

(tcurr

) = fld

Vtot

= f(Rld

, tD, NCPU

, …)

Don’t stop here, add more functions!!!

Viktor Yarmolenko, Rizos Sakellariou, “Towards
Increased Expressiveness in Service Level
Agreements”, Concurrency and Computation:
Practice and Experience, vol.19, 1975-1990 (2007)

SLA Example: Defining the Price of the Service as Function

•

When client pays money, client wants guarantees, QoS,
promises, etc

•

These can be defined in Service Level Agreements,
which preferably are legally binding –

contracts.

•

Once provider agreed to the terms described in SLA,
provider better keep the agreement. How? If failures
occur, what to do? Which SLAs

to brake? How to

schedule more efficiently? How to schedule to generate
more income? …

The Problem

min(NCPU

) min(tD

) max(A) min(TS

)

min(TF

)

min(tL

)

min(TS

+ wtD

)

max(TF

+ wA

)

min(TF

+ w1A + w2

tL

)

etc.

Simple and Fast Heuristics: Step 1 -

Prioritising Jobs

1.

Pick up the next job on the list

2.

Try to find NCPU

nodes which
are available from TS

to (TS

+tD

)

3.

If unsuccessful, try step 2 but
with (TS

+ Δt)

to (TS

+Δt+tD

)

4.

Repeat steps 2 and 3 while
(TS

+Δt+tD

) < TF

or until find
enough free nodes

5.

If failed to find NCPU

nodes,
reject the request.

1
2

3

4
5

6
7

8
9

Simple and Fast Heuristics: Step 2 -

Allocating Jobs

1.

Pick up the next job on the list

2.

Try to find NCPU

nodes which
are available from TS

to (TS

+tD

)

3.

If unsuccessful, try step 2 but
with (TS

+ Δt)

to (TS

+Δt+tD

)

4.

Repeat steps 2 and 3 while
(TS

+Δt+tD

) < TF

or until find
enough free nodes

5.

If failed to find NCPU

nodes,
reject the request.

TS

TF

?

Simple and Fast Heuristics: Step 2 -

Allocating Jobs

1.

Pick up the next job on the list

2.

Try to find NCPU

nodes which
are available from TS

to (TS

+tD

)

3.

If unsuccessful, try step 2 but
with (TS

+ Δt)

to (TS

+Δt+tD

)

4.

Repeat steps 2 and 3 while
(TS

+Δt+tD

) < TF

or until find
enough free nodes

5.

If failed to find NCPU

nodes,
reject the request.

TS

TF

Simple and Fast Heuristics: Step 2 -

Allocating Jobs

1.

Pick up the next job on the list

2.

Try to find NCPU

nodes which
are available from TS

to (TS

+tD

)

3.

If unsuccessful, try step 2 but
with (TS

+ Δt)

to (TS

+Δt+tD

)

4.

Repeat steps 2 and 3 while
(TS

+Δt+tD

) < TF

or until find
enough free nodes

5.

If failed to find NCPU

nodes,
reject the request.

TS

TF

Simple and Fast Heuristics: Step 2 -

Allocating Jobs

Results: Single Parameter Ordering

RND min(TS) max(TS) min(TF) max(TF) min(tD) max(tD) min(NCPU) max(NCPU) min(A) max(A) min(tL) max(tL)
60

65

70

75

80

85

90

95

100

Pe
rfo

rm
an

ce
, %

Single Parameter Heuristics

 SLA
 CPU

Order jobs in ascending (min(H)

) or descending (max(H)

) order of H.

Results: Two Parameter Ordering

TFwTD TSwTD TFwCPU TSwCPU TFwA TSwA TFwLax TSwLax AwLax TFwTS
90

91

92

93

94

95

96

97

98

99

Pe
rfo

rm
an

ce
, %

Heuristics, H=h1+wh2

 SLA
 CPU

SLAs

accepted
Using RND ordering

TFwAwLax TFwA TFwLax
92

93

94

95

96

97

98

99

w1= 0.0
w2= -0.14

w1= 0.03
w2= 0.0

w1= 0.0
w2= -0.78

w1= -0.135
w2= 0.0

w1= 0.03
w2= -0.14

w1= -0.06
w2= -0.6Pe

rfo
rm

an
ce

, %

Heuristics, H=h0+ w1h1+ w2h2

 SLA
 CPU

h0

= TF

,
h1

= A,
h2

= tL

,

Results: Three Parameter Ordering

Pricing TF TS tD tL A NCPU

SLA
CPU

For best performance jobs must be always ordered by
the lowest or the highest parameter first

Viktor Yarmolenko, Rizos Sakellariou, “An Evaluation of Heuristics for SLA Based Parallel Job Scheduling”,
Proceedings of the 3rd High Performance Grid Computing Workshop (HPGC)

(in conjunction with IPDPS 2006),
Rhodes, Greece (April 2006), IEEE Computer Society Press

Other pricing policies were explored:

Results: Interesting Observations

Rizos Sakellariou, Viktor Yarmolenko, “Job Scheduling on the Grid: Towards SLA-Based Scheduling”,

in L.
Grandinetti

(ed.),

High Performance Computing and Grids in Action", IOS Press, 2008

Higher level overview is here:

Workload: The Challenges

•

The performance of the system is heavily dependant on the type of the
workload

• There is no or very little data available about SLA workloads

•

We need a tool that would allow to assemble a synthetic workload
based on real logs, existing models, various other rules, and their
combinations, easily integrated in a workload generator tool which
would provide a workload stream with desired characteristics and

 behaviour.

•

Novel workloads require new metrics or ways that characterise them
(job rate, or throughput may not longer be an adequate description of a
workload)

Workload Generator Framework: The Concept (paper in preparation)

N of CPUs

Job Duration

Time Constraints

Price
Other Characteristics

Job Rate

Job Arrival Time

Generator

SLA ID: 0001
SLA Birth: 12:00
SLO: job duration = 3:30h
SLO: CPUCount = 16
SLO: time constraints =

{12:00-21:00}
SLO: Price = £1

SLA ID: 0002
SLA Birth: 12:01
SLO: …
SLO: …
SLO: …
SLO: …

SLA ID: 0003
SLA Birth: 12:01
SLO: …
SLO: …
SLO: …
SLO: …

…

SLA Workload Framework

Calzarossa

& Serrazi

Model (1985) models the daily cycle of job rate,
with peaks in the morning and afternoon, and a drop at lunchtime.

Active Time Quiet Time

Extended to include a night time, currently
const, but can be modelled by any function

Modelling Variation in User Demand: Related Work

The Feitelson

Model (1996):
Degrees of Parallelism: harmonic
distribution of order 1.5, with the most
popular sizes of powers of two.
Repeated Executions: the same job is
likely to be executed again,
n-2.5,where n is the job duration.
Arrival Process: used in this model is
Poisson.
Correlation of Runtime with Parallelism

0 8 1 6 2 4 3 2 4 0 4 8 5 6 6 4 7 2 8 0 8 8 9 6 1 0 4 1 1 2 1 2 0 1 2 8
0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

N
or

m
al

ise
d

di
str

ib
ut

io
n

of
 C

PU
s p

er
 jo

b

C P U s p e r jo b

Modelling SLA Constraints: Paper in Preparation

NCPU = 4

tD

= 6

CPU

Ti
m

e

TS

TF

The constraint is represented as tightness:

tT

=
TSTF

-

tD

The distribution of tightness in the workload is
described by a specific function fTT

()

Current state of grid is such that this function is a discrete distribution
with non-zero values for:
tT

= 0

–

no constraints, deadlines
tT

= 1

–

Advance Reservation

WebApp

Demo available from http://www.gridscheduling.org

Fietelson

Model
TA NCPU tD NJ

Calzarossa

& Serrazi
Model Tcurr RJ

Tightness
Model tT

Tcurr RJ tT NCPU tD TFTS

Calculate TS

Calculate TF

Arrival Factor ~

1/RJ

Keep generating parameters from Fietelson
Model while Tcurr

> TA

keeping parameters
from Calzarossa

&S model the same.
When Tcurr

<TA

generate new set from C&S
model and update Arrival Factor in Fietelson
model.
Store

additional (NJ

-1)

jobs and release them
when TS

>Tcurr

TS

(i) = TF

(i-1)

Workload Generator Framework: Example (paper in preparation)

http://www.gridscheduling.org/

i=1

i=2

i=3

i=4

D
lo

ad
(t)

Time line, t

Time line, t

SL
A,

 i=
{1

,N
}

TS

TS

TS

TS

TF

TF

TF

TF

tT

×NCPU

tT

×NCPU i=1

N

(a)

(b)

Workload Generator Framework: What Metrics (paper in preparation)

Example of a new metric: Load Density of the SLA workload

0 1440 2880 4320
0

200

400

600

800

1000

1200

1400

1600

Day 3Day 2Day 1

W
or

lo
ad

 D
en

si
ty

 (~
 J

ob
 R

at
e)

Time, mins

 tT = {0.99...1}
 tT = {0.8...1}
 tT = {0.5...1}
 tT = {0.1...1}

Workload Generator Framework: Output

• Dynamic SLAs

for DAGs
• Dynamic SLAs

for dynamic workflows

• SLA workload models and generator
• Scheduling Heuristics
• Dynamic SLAs

for market models

• SLAs

with notion of trust

Thanks!

In preparation: Viktor Yarmolenko, Rizos Sakellariou, “A Framework for SLA Workload Generation”

In preparation: Viktor Yarmolenko, Rizos Sakellariou, “An SLA Workload Model for Time Constraints”

Rizos Sakellariou, Viktor Yarmolenko, “Job Scheduling on the Grid: Towards SLA-Based Scheduling”,

 in L. Grandinetti

(ed.),

High Performance Computing and Grids in Action, IOS Press, 2008

Viktor Yarmolenko, Rizos Sakellariou, “Towards Increased Expressiveness in Service Level
Agreements”, Concurrency and Computation: Practice and Experience, vol.19, 1975-1990 (2007)

Viktor Yarmolenko, Rizos Sakellariou, “An Evaluation of Heuristics for SLA Based Parallel Job
Scheduling”, Proceedings of the 3rd High Performance Grid Computing Workshop (HPGC)

(in
conjunction with IPDPS 2006), Rhodes, Greece (April 2006), IEEE Computer Society Press

Viktor Yarmolenko, Rizos Sakellariou, Djamila

Ouelhadj, Jonathan M Garibaldi, “SLA Based Job
Scheduling: A Case Study on Policies for Negotiation With Resources”, Proceedings of the All Hands
Meeting AHM'05, Nottingham, UK (September 2005)

Keep checking http://www.gridscheduling.org

http://www.gridscheduling.org/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

